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ABSTRACT

There are two purposes of this project. One is to
determine whether linear programming techniques can

improve the performance in handling design optimiza-
tion problems with a large number of design variables
and constraints relative to the feasible directions algo-

rithm. The second purpose is to determine whether
using the Kreisselmeier-SteinhauserfKS) 1 function to
replace the constraints with one constraint will reduce
the cost of the total optimization. Using the software
program, CONMIN 2, reference cases are run with both

the linear and non-linear options. Next the same test
case is run using the linear programming subroutine,
LINPR1 3, from the math library. Comparisons are then
made between the solutions obtained from both sub-

routines, CONMIN and LINPR1.

PROCEDURE

A simple problem of a hub with 12 spokes was used
as the test example (see Appendix). This problem has
12 design variables and 24 constraints. The calculations
were done on a DEC MICROVAX 1I workstation

using code written in FORTRAN 77.
Using CONMIN, results were obtained using the

non-linear and linear options. Next the 24 constraints
were replaced by one, a KS-based cumulative con-
straint, and results obtained, again for both the non-
linear and linear options (figure 1).

Since the value of rho in the KS function influences

the result, different values of rho were used in the KS
function. The comparisons between the linear and non-
linear CONMIN solutions using the 24 constraints and
one constraint(when using the KS function) are in
figure 2.

After obtaining the results using CONMIN, the
non-liner problem was turned into a linear program-
ming one to be solved using the linear programming
subroutine LINPR1. This is a library routine from the
math library and uses the simplex method. The results
using this routine are compared to the CONMIN
results in figure 3.

CONCLUSIONS

The optimal value of the objective function was
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Figure 2 CONMIN, non-finear, finear, KS

practically the same when using CONMIN with or
without linearization and with or without the KS func-

tion as the cumulative constraint (figure 1). When the
KS cumulative constraint was used, the optimal objec-
tive function was influenced by the rho factor (figure 2).

The CONMIN optimized objective function was



consistently lower than the one obtained from the linear

programming routine, regardless of the use of the KS

APPENDIX

Problem Formulation:
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CONMIN VS LINPR "1

LINPR1

Figure 3 CONMIN vs. LINPR 1

function (figure 3). This is an unexpected and impor-

tant finding of this study.

In terms of efficiency, all the runs were comparable
in the number of function evaluations needed.

However, there is a reduction of memory required by

CONMIN when the constraints are replaced by a single

cumulative constraint using the KS function.
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Nomenclature

NS number of spokes
NLC number of loading cases

_÷l = _ + 2rc/NS

E Yotmgs modulus
Ai cross-sectional area of rod i

R radius of the circle = length of each rod
uJx displacement of the hub along x for jth

loading case
uJy displacement of the hub along y for jth

loading case
PJx,PJy load components along x, y for jth loading

bi =EA i/R
(_at allowable tension stress

oa¢ allowable compression stress

Details of the Analysis

NS

klz = __b_coe2o_

N$

1 b

N$

(1)

(2)

k2= = _, b_,in2a, (3)

Displacements for loading casesj

DET = ki]k22-k212 (4)



UJx = (PJxk22" _ykl2)/DET

UJy = (PJykll - PJxkI2)/DET

Strain in rod i for loading case j

(5)

(6)

where

[,,¢s_LC e "(''-'''')"KS = g,_== + ll,
P L i=l

(13)

eJi = (-tlJxcoS(7,i - uJysincei)/R

Stress in rod i for loading case j

=

There are NS- NLC stresses oJi

Material volume

(7)

(8)

DETAILS OF THE OPTIMIZATION USING LINPR1

Turning the Optimization Problem into a Linear

Programming One
Introduce a new variable

Xi= 1/Ai (14)

/'/3

V=R.ZAi
i

9) Compute derivatives

OVlOXi and OgJm/0Xi (15)

DETAILS OF THE OPTIMIZATION USING CONMIN

min V(Ai) (10)

Ai

subject to the constraints

gm = (o'ij¢_= - 1) <0 (11)

m = 1 --+ (INS, NLC) (12)

where _a = _at. of oJi > 0, otherwise cra = crac

Atom <- Ai

Because of 14, equation 15 becomes

0V/0Xi = OW3Ai (-1/X2i) -= 3V/c3Ai (-AZi) (16)

arid agJmJc)Xi = Oirru/c)Ai('A2i) (17)

Using equation 9 put _V/0Ai = R ill equation 16
then

OV/0Xi = R(-AZi) (18)

Approximate Linear Optimization Problem
Let V °, g°m be the values at the initial Xi = X°i

Approximate V(Xi), gm(Xi) by extrapolation

Numerical Data for Test Cast V = V°+ 0V/0Xi(Xi-X°i) (19)

NS = 12

NLC=2
Ai = lcm 2

R = 100cm
E = 20, 106 N/cm 2

loading case 1
PIx=40000N; ply = 0

loading case 2
P Jt= 40000N; = 0
oat = 80000 rgcm"; _ac = -40000 N/cm 2

Amin = .lcm 2

Using the K-S function in the Optimization.

The optimization is repeated using the cumulative K-S

function in place of equation 11.

gm = KS

gm= g°m + Ogrn/OXi(Xi-X°i) (20)

The approximate problem is:

min(V ° + _V/_Xi(Xi-X°i)) -- (21)

Xi

STOC

g°m + _gm/OXi(Xi " X°i) < 0

where (22)

[3Xo < (Xi Xio)< (1 + 13)X°i (23)

equation 23 is a move limit that does not allow Xi
to move too far from X°i. Initially 13 = .2.
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